PCbug11 User's Manual (V3.2)

The information in this document has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, Motorola reserves the right to make changes to the product herein to improve reliability, function, or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights or the rights of others. Motorola products are not authorised for use as components in life support devices or systems intended for surgical implant into the body or intended to support or sustain life. Buyer agrees to notify Motorola of such intended end use whereupon Motorola shall determine the availability and suitability of its products for the use intended

 Copyright (c) Motorola Ltd 1990

Contents

Title

 Page

1. Introduction to PCbug11

 2

2. Setting up your M68HC11 for use with PCbug11 3

3. Starting PCbug11 with your hardware
 4

 3.1 Running the software

 4

 3.2 The PCbug11 monitor screen

 5

 3.3 Fixing simple problems and trying simple commands 6

4. How PCbug11 works 8

5. Using the Software 10

 5.1 PCbug11 Runtime Command Structure 10

 5.2 Uses of the Software 12

 5.3 Pitfalls to avoid 12

6. PCbug11 Commands 14

 6.1 Command line editing 14

 6.2 Monitor Commands 14

 6.2.1 PCbug11 Command Summary 15

 6.2.2 PCbug11 Command Description 17

7 Advanced Topics 43

 7.1 Macros 43

 7.1.1 Defining Macros 44

 7.1.2 Editing Macros 45

 7.1.3 Listing and Clearing Macros 46

 7.2 Using Trace and Breakpoints 46

 7.3 Talkers in EEPROM or External Memory 47

 7.4 Programming EPROM (711) parts 49

 7.5 Designing new talkers 50

Appendices 51

A - Circuit Diagram and Components List 51

 A.1 Components List 51

 A.2 Circuit Diagram 52

B - PCbug11 Error messages 53

 B.1 Operation Errors 53

 B.2 Communications Errors and other Fatal Errors 53

 B.3 Command Errors 55

C - PCbug11 Disk Contents 56

D - Software Version Information 57

1. Introduction to PCbug11

PCbug11 is a software package designed to allow easy access to and simple experimentation with M68HC11 family members.

The package allows users to program the 68HC11 of interest and also to examine the behaviour of internal peripherals under specific conditions. In addition user programs may be run on the part with breakpoint and trace processing available.

This manual provides information on installing and running the program and on common problems encountered. The user is advised to review any attached version information note before proceeding with the code.

Terminology:

M68HC11, HC11 Any member of the 68HC11 family of processors

A8, E9, D3 etc. A particular family member - normally preceded by MC68HC(7)11..

The following are trademarks:

 MS-DOS is a registered trademark of Microsoft Corporation IBM is a registered trademark of International Business Machines Corporation Motorola and (batwing) are registered trademarks

2. Setting up your 68HC11 for use with PCbug11

There are two steps in preparing your 68HC11 for use with PCbug11. Firstly the hardware support components must be prepared and secondly the software must be run on your IBM or compatible PC. Appendix A deals with the hardware construction and lists the components required.

The software may be installed on to a hard disk as follows:

1) PCbug11 is supplied on a single 360KB disk.

2) Insert disk into floppy drive of the PC.

3) Create a new directory to contain PCbug11 files - say PCBUG11

4) Copy all the files on the disk onto the hard disk directory using the COPY or XCOPY commands.

5) Once successfully installed the monitor may be run from anywhere in the PC directory structure if the DOS PATH command is correctly set up.

6) Note that the software may be run from the floppy drive assuming all the appropriate files are available.

3. Starting PCbug11 with your hardware

Using the software package is simply a case of setting up the hardware, connecting it to the PC communications port, and running the monitor program PCbug11.

3.1 Running the software

PCbug11 is a highly sophisticated piece of software which may take many options depending on the 68HC11 family member, PC port used, crystal used and if any macros are to be used on startup. However, in the simplest case the command to startup the software is as follows:

 PCBUG11 -XA

 This will start up a 68HC11A8/1/0 with the XIRQ pin connected to the PD0 pin.

It is also possible to use other 68HC11 family members. To use other family members the two characters after the -X in the command line is altered. This character is associated with the type of bootloader used on the chip. Most HC11s use the E9 type bootloader so that the -XE option will suit most family members. The following table highlights the current possibilities :

Device PCbug11 startup command

68HC11A8)

68HC11A1) PCBUG11 -XA

68HC11A0)

68HC11E9)

68HC11E1) PCBUG11 -XE

68HC11E0)

68HC811A2 PCBUG11 -XE

68HC811A8 PCBUG11 -88

68HC(7)11D3 PCBUG11 -D

68HC711E9 PCBUG11 -E

68HC11F1 PCBUG11 -XE

68HC(7)11K4 PCBUG11 -K

Type the command shown above which corresponds to the device which you have installed on your hardware. Note that if the X option is indicated then the XIRQ pin should be connected to the PD0/Rx pin.

3.2 The PCbug11 monitor screen

The status of the hardware is displayed on the screen of the PC. There are four major areas or "windows" which make up this screen.

 1) The command window is situated at the bottom left of the PC screen. On colour screens it has a black background and white text. It is in this window that commands to the package are entered and

displayed. The command cursor which is part of this window appears on the bottom line of the screen and is indicated by a ¯ character. When commands are typed in they will appear after this cursor. The rest of the window is used to display previous commands and indicate last error messages.

 2) The status window is situated to the middle right of the screen. On colour screens this is shown with a purple background and white text. This shows the current 68HC11 processor being used, its state (running,stopped,tracing), the status of the RS232 RTS line and the current user set interrupt vectors.

 3) The register window is displayed in the middle of the screen. It is shown with a red background and white or yellow text. This window displays the last recorded contents of the processor registers. It is important to note that this window is only updated on startup and when requested by the user. The contents of the registers may be modified by using PCbug11 commands.

 4) The main window occupies the upper half of the screen and has a blue background with white text. This window is used to display most information about the package. It shows the results of commands, memory contents, assembly opcodes, macros and many other items concerned with the operation of the package.

In addition to the above windows a temporary window is used to indicate any errors and whether the communications to the HC11 are operating normally. This is displayed on top of the main window contents and on a colour screen is shown as red characters on a black background. This error window is cleared by hitting any key or after a timeout of around 5 seconds.

If the screen as described above does not appear then the program has not run properly. A DOS or a PCbug11 error message (in the error window) will describe what the problem is. Please correct this error before proceeding. The following section gives some help if errors occur.

3.3 Fixing simple problems and trying simple commands

If the software did not start up properly then errors will be displayed on the command screen and the register window will show a series of XX's where the register values should be. A detailed description of the meaning of these errors is contained in Appendix B, however, it is likely that for an initial start up that the errors are due to either the communications link or some incorrect setting on the hardware. Check the following:

 1. 5V connected correctly to board.

 2. An 8MHz crystal installed in the circuit.

 3. Communications cable correctly wired.

 4. 68HC11 in bootstrap mode and properly reset

 5. Cable connected to port COM1 of the PC (COM 2 can be used, see section 5.1).

Try all the above then retry starting the system. If the system continues to fail then it is best to check the hardware constructed and the HC11 itself before calling for help.

If you had no error messages and the register display contains digits then the package is working correctly.

The full command set for PCbug11 is contained in section 2.6, but we shall look at some simple commands to demonstrate the operation of the package.

1) To ensure that communications between the board and the PC are operational the command ^R (<CTRL> and R keys pressed simultaneously) is supplied. If the communications are ok then

 Communications synchronised

appears in the main window. If there is a fault then

 Communications fault

appears in the main window.

2) If at anytime a communications fault is shown (either after pressing ^R or by another operation) then it is probably best to restart the package once the checklist above has been followed. To restart the package while it is running simply type

RESTART

This has the effect of causing the communications program to be reloaded and allows you to start afresh. Note : this command will only work if you reset the HC11 before typing the command. This command may cause any program in RAM on the processor to be lost.

3) To finish a session with the package the command is : QUIT

A message in the main window will ask you to confirm this before the program is terminated on the PC.

4) Reading the contents of the processor registers is done by typing : RD

If the command is successful the register contents will be displayed. If not then an error message will be shown and the register window will contain X's.

5) Displaying the contents of memory can be done by the

 MD start_address (end_address)

command. The two values start_address and end_address indicate the block of memory to be displayed. If end_address is not entered then the 16 locations from start_address will be shown. Note that all hexadecimal numbers within PCbug11 are indicated by a leading $.If the contents are correctly read then they will displayed on the main window. If not then an error message will be displayed.

6) The main window may be cleared by the command CLS.

7) A user help function is available if the help file has been installed. To see a summary of the commands available type: HELP

Help on a particular command may be available. To see this type: HELP command

where command is the command of interest.

The operation of more complex commands is shown in section 6.2

4. How PCbug11 works

To fully appreciate both the power and the limitations of the PCbug11, it is important to understand how the system works. This section describes the basic operation of the package. It is strongly advised

that the reader examines this section before going on to more complex commands.

Most microcomputer emulators/trainers work in a similar manner. The microcomputer chip will run a program in ROM which communicates with a terminal allowing the user to execute program and alter registers etc. This monitor program is generally sophisticated and requires a complex hardware platform, although no other computer equipment (except a terminal) need be attached except when higher level functions such as high level debug etc. are used.

With this package the approach is quite different. In this case the microcomputer runs only a very simple program. All the sophistication is at the PC which has a serial connection to the board. The communication between the PC and the HC11 allows similar functions to that of the emulator to be carried out with a very much simpler hardware board. In effect the hardware complexity of the emulator has been replaced with software complexity on the PC.

PCbug11 communicates with the 68HC11 through a low level communication program called the talker. A number of different talkers are supplied to support different HC11's and operating modes. All of these talkers are designed to communicate through the HC11's SCI port to the PC's serial port.

Each talker occupies less than 256 bytes of 68HC11 memory space and operates under interrupt. However, the operation of the talkers can be divided into two main groups: those talkers which use internal HC11 RAM memory and those talkers which use internal EEPROM or other ROM.

In the first case the PC must download the talker into the the HC11's RAM each time the hardware is used. In the latter the PC simply synchronises communication with the talker program which is already

running on the HC11. Both approaches have advantages and disadvantages and are discussed below. The RAM approach is termed the boot method and the alternative is called the ROMed method.

In the boot method, a talker is downloaded into the 68HC11's internal RAM during the start up of PCbug11. This download is achieved by using a special mode of the HC11 called bootstrap mode. In this mode it is possible to have the HC11 automatically download a program into its internal RAM and then run that program. This makes it possible to alter internal values, program memory, read and write to chip ports and other functions. This approach is very simple and requires no external hardware around an HC11 except a power supply, an oscillator and an interface to the RS232. It is limited in that it does use around 240 bytes of the internal RAM (less for the D3 part). This may be a problem for some users.

In ROMed mode, the appropriate Talker must be preprogrammed into either internal or external 68HC11 memory space, before PCbug11 is run on the PC. In the simplest case the talker is placed in an external memory and is run whenever the HC11 is powered up. A compromise is possible if a talker is loaded into the HC11's internal EEPROM.

Since the Talker is interrupt driven, and resides in the same memory map as user software, certain vectors must be reserved for the Talker code. These are the RESET, XIRQ, and SWI vectors. However, the SCI vector may be used in preference to the XIRQ vector, to give maskable control to PCbug11.

Given the operating approach of PCbug11 described above some rules of thumb become apparent.

1) PCbug11 in boot mode uses HC11 internal RAM for its talker program. Also in RAM are the interrupt vectors used in bootstrap mode and the program stack. In an HC11 with 256 bytes of RAM this leaves little room for any user program in RAM. Here the user is advised to program in EEPROM.

2) PCbug11 is interrupt driven. Therefore any user program which uses interrupts should be carefully considered. The standard approach uses the XIRQ pin to cause an interrupt whenever communications are required by the user. So interrupts which set the I bit may be used reasonably freely. However, breakpoint and trace operations also use the I bit (see point 3) so care should be taken. Breakpoint and trace are not available with the D3/0.

3) PCbug11 implements trace and breakpoint by placing a software interrupt at the location where the trace/breakpoint is required. This means that the code at the location must be modifiable by PCbug11 i.e. it must be either RAM or EEPROM (internal or external). The program cannot operate trace or breakpoints on ROM. This restriction also applies to FLASH memory as they are not byte programmable. Note that any user defined SWI will be handled correctly with a little extra software

overhead.

The approach taken by PCbug11 is a simple one requiring little hardware, however, the user must be aware of its operation in order to fully utilise the system.

5. Using the Software

The object of this section is to introduce the user to some of the possibilities for using the software. Firstly, the various ways in which PCbug11 can be initialised will be discussed and then some typical uses and pitfalls will be explored.

5.1 PCbug11 Runtime Command Structure

To the user PCbug11 presents a large range of possibilities for use. This section deals with the command which is typed at the DOS prompt.The syntax for this command is :-

PCBUG11 [?|[-X][talker][macro=macroname params][baud=baudrate][port=1|2]

<talker> = <boottype>|<ROMtype>

<boottype> = A|D|E|K|88|<user defined>

<ROMtype> = user defined file for ROMed talker

<baudrate> = a number which is a possible baud rate for the PC and for the HC11

<macroname> = A valid name for a macro file which is stored in the current directory

KEY:

 <talker_type> indicates which talker is to be used. If this field is preceded by the - character then the file TALK<boottype>.BOO/.XOO must be in the same directory as PCbug11.exe.

 <ROMtype> indicates that a ROMed talker is in use and the user must supply a file called <ROMtype>.MAP in the current directory.

 <baud> is only applicable when a crystal other than 8MHz is being used. At this frequency the communications rate which the PC uses is 9600 baud and the rate at which the -<name> talker is downloaded is 7812. Users using alternative crystals must inform PCbug11 what ratio this is to 8MHz by using the <baud> option. For the <boottype> option,

<baudrate> is the baud rate that will be used by the PC and the HC11 for communications, it must be a value which represents the same ratio to 9600 as the crystal in use represents to 8MHz That is,

 <baud> = crystal_used MHz * 9600 (for <ROMtype>)

 8

If the <boottype> option is in use then <baudrate> must be the value which represents the same ratio to 7812 as the crystal in use represents to 8MHz. That is

 <baud> = crystal_used MHz * 7812 (for <boottype>)

 8

 <macroname> is the name of a macro library file i.e. <macroname>.MCR which is automatically loaded at startup. This is useful because if a macro called AUTOSTART exists in this library then it will executed automatically after startup. Parameters may be passed to this macro by enclosing them in round brackets () immediately after the macro= option.

 port=2 indicates that the PC port to be used for communications with the hardware is port 2 and not port 1 which is the default port.

Examples of use of runtime command:

Command = PCBUG11 (No options)

This command causes the Command Line Compiler (CLC) to be invoked. This

allows the user to construct a command line by answering certain

questions related to what the options are required. Inexperienced users

may find this useful when swapping from one HC11 to another or wishing

to try a new option.

Command = PCBUG11 ? (query option)

The query option simply displays a short form of the runtime command line syntax. Useful as a quick reminder.

Command = PCBUG11 -XE (E/F/G/L series)

This simple command causes a suitable HC11 to run a boot option talker. The talker is downloaded into RAM and then run.

Command = PCBUG11 -XA port=2 (A/E2 using port 2 option)

This command downloads the HC11A8 type boot talker except that it uses serial port 2 on the PC if it exists. The talker is loaded into RAM and run from there.

Command = PCBUG11 -XE TRYIT (E/F/G/L series and macro load option)

Here the boot option talker is loaded into a suitable RAM and the macro library file TRYIT.MCR is loaded. If the macro AUTOSTART is present then it is run automatically.

Command = PCBUG11 TALKEREE baud=4800 macro=LISTIT (talker ,baud and macro load)

The talker called talkeree.S19 has been pre-loaded into the HC11 already. This command starts up this talker and loads the macro library file LISTIT.MCR. NOTE for this talker to work correctly PCbug11 must be able to load the file TALKEREE.MAP which contains essential system variables - section 7.3 for more details. This file must be in the current active directory. The crystal on the talker board is 4MHz.

5.2 Uses of the Software

The list of possibilities for the software is unlimited. This is not a clever software simulation of a 68HC11, the commands and programs you enter will run on the real hardware, albeit via a software interface. Since most of the time the hardware will be running the HC11 in special bootstrap mode access to secured resources is at the user's discretion and not under HC11 control. (This applies once the HC11 is started, in starting the part any installed program may be erased)

Since the package runs under interrupt. It is possible to have a program running and still be able to read registers etc. It is also possible to write to registers and even to memory. With care it is even possible to

modify the program that is being run at that time. The user should note that while the program or registers are being modified the program in use actually waits while the interrupt caused by PCbug11 is processed.

Breakpoints can be set in the software to cause the 68HC11 to stop whenever a point in the code is reached. The trace command also allows the user to step through code to see how instructions are executed and what result they have on the registers and CCR.

PCbug11 allows the user to modify and assemble into EEPROM as if it were RAM. Although the 68HC11 has quite an elaborate routine required to program this memory, PCbug11 handles the algorithm so that programming can be carried out transparently. The area of internal EEPROM must be

predefined using the EEPROM command before PCbug11 can program it correctly. Note that external EEPROM should not be specified in this way since the talker will automatically handle slow external memories. The user will notice a difference in response time between writing to EEPROM and RAM.

5.3 Pitfalls to avoid

Just as a feature of PCbug11 is being able to program EEPROM transparently, there is also a side issue. On some HC11 there is a register which adds even more protection to the EEPROM memory. This is called the BPROT register and generally resides at address $1035. This must be modified before the EEPROM or CONFIG register can be programmed. PCbug11 DOES NOT modify this register.

If programming the CONFIG register it should be remembered that the contents of this register are generally not readable until the HC11 has been reset. Note also that if the part is reset in bootstrap mode certain automatic functions are carried out to place the part in a sensible operating mode. So the user will find that the NOCOP bit will always read 1 in bootstrap mode even if it has been programmed otherwise. If it is a security mode part then clearing the NOSEC bit will protect the internal RAM, EEPROM and CONFIG register. This means that if the part is reset in bootstrap mode then the CONFIG register will read $0F. If it didn't then the security mode would not be operating!

The use of interrupts is possible with the hardware, but certain practices must always be followed. For interrupts such as the real time interrupt etc., the interrupt is allowed by the I bit being clear and the appropriate interrupt mask being set (e.g. RTII bit for the real time interrupt). Note that while the interrupt flag I is set by an interrupt and cleared by a CLI (or RTI) instruction, the flag for the

interrupt source itself remains set (for the real time interrupt this is RTIF). So an exit from a real time interrupt service routine which leaves RTIF set will cause an interrupt to occur again immediately and communications with PCbug11 could cease (due to stack overflow) or cease to make sense. This has often been seen as a bug with PCbug11, but a casual analysis shows the user at fault. The user must clear the local interrupt flag (e.g. RTIF for the real time interrupt).

When real time measurements and calculations are in progress, it is necessary to remember that by reading registers or memory, the user is causing interrupts which interfere with the logical operation of the program. This could cause the result of the code to be upset in such a way that the answer is wrong. This is particularly the case when the processor is waiting for the logical value on a port pin to change

before carrying out some action. If the change occurs while the user is using PCbug11 to enquire about the processor status then the change could be lost or upset. Remember that the 68HC11 itself does its own self examination, it does not rely on external hardware for this function. Programs which perform off-line functions such as calculations will not, of course, be affected by this action.

Breakpoints and traces are implemented by the package via software interrupts (SWI). This means that when a breakpoint is hit an interrupt is generated which is handled by the internal talker. If the SWI is the used by the user directly then the SWI vector is called. If it is a true breakpoint then the PC performs various actions to inform the user. This system which is used by many emulators is very effective, but unfortunately is limited to use with RAM or EEPROM. ROM cannot have breakpoints set in it nor can it be traced through. Another problem exists when resetting the device while all breakpoints are still set. When the user resets or restarts the SWIs will remain in memory (especially EEPROM). These will be displayed as SWIs where normally another opcode would be displayed. The moral is either clear all breakpoints before resetting or restarting the device or load your code in again before using it after a reset/restart.

Finally, a point about macros. These are implemented such that their execution by PCbug11 can be very quick. A practice which may therefore cause problems is to place a G command in a macro followed by certain other commands which modify memory associated with the program. Since

there is no way of knowing where the program is in its execution, a macro may modify memory before or during the program's own memory operation (remember that PCbug11 commands operate under interrupts, in which case the program is temporarily halted). Since memory operations normally involve loading/calculating a value and then storing it in memory, it is possible that the load/calculation could be performed and then an interrupt could occur during which PCbug11 could set the value of that location. On ending the interrupt the program would then store into the memory location. This could cause apparently erroneous operation and error messages. Therefore, it is not advisable to have a G instruction in a macro followed by instructions which modify memory.

Note that different boot talkers initialise the stack to different values according to the availability of RAM. Therefore the user take care when moving from one processor to another where the stack pointer

varies. The default values are:

A - $EB; D - $EB; E - $1FF; K - $1FF; 88 - $EB

6. PCbug11 Commands

PCbug11's command line can be edited using a number of keys on the host computer. In addition there is a recall buffer which holds the last 16 commands entered. The following keys provide the edit and recall features:

left arrow - move cursor back 1 character

right arrow - move cursor forward 1 character

Home - move cursor to first character

End - move cursor to last character

delete left - delete to left of cursor

Del - delete at cursor position

CTRL End - delete from cursor position to end of line

Ins - insert at cursor positiion (cursor changes to blocke cursor)

up arrow - recall last entered command

down arrow - recall last command in recall buffer

Esc - Clear command line

In addition, the Esc key can be used to terminate most commands in progress. e.g. MD, DASM, ASM.

The 4 lines above the command line provide a trace of the last 4 commands executed.

The next line above this displays break point and last error messages.

An error code is returned to MS-DOS, with one of the following meanings:

Error Code Meaning

---------- -------

 0 No error

 1 VERF error

 2 MS or BF error

 3 Talker communication failure.

In MS-DOS Batch files the error code can be checked with ERRORLEVEL.

Monitor Commands

The following is a list of all commands available from PCbug11, with a short description of their function. A more detailed description follows.

The following is a list of all commands available from PCbug11, with a short description of their function. A more detailed description follows.

PCbug11 Command Summary

ASM addr [mne|dir] - Call symbolic macro line assembler, with option to auto insert mnemonic or directive

BAUD [rate] - Display/Set serial baud rate

BF addr1 [addr2] byte|word - Block fill memory with byte or word

BL - Display breakpoints

BR [addr [macroname]] - Display/Set break point [with optional Command Macro execution]

CALL addr - Execute the subroutine at addr

CLRM - Clear all Command Macros

CLS - Clear main window

CONTROL [parameter] - Display/Change PCbug11 system parameters

DASM addr1 [addr2] - Disassemble from addr1 [to addr2]

DB startaddr [endaddr] - Display MCU Memory

DEBUG - Reserved word

DEFINE symbol value|address - Define a symbol

DEFM macrnam|TRACE|AUTOSTART - Define Command,Trace or Autostart Macro

DELM macrnam|TRACE|AUTOSTART - Delete Command,Trace or Autostart Macro

DIR [mask] - Display Disk Directory

DOS [command] - Shell to DOS/Execute DOS command

EDITM macrnam - Edit a macro

EEPROM [startaddr [endaddr]] - Display/Clear/Set EEPROM Address Range(s)

EEPROM DELAY option - Set EEPROM erase/write programming time

EEPROM ERASE [option] - Display/Change EEPROM Erase-before-Write

EPROM [startaddr [endaddr]] - Display/Clear/Set EPROM Address Range(s)

EPROM DELAY option - Set EPROM erase/write programming time

FIND byte|word addr1 addr2 - Find all occurrences of byte or word between addr1 & addr2

FIND mnemonic addr1 addr2 - Find all occurrences of mnemonic between addr1 & addr2

G [addr] - Start User Code Execution

HELP - Display Help Information

KLE - Kill last error message

LOADM [filename] [macroname] - Load Macro Definitions from Default/User File

LOADS filename [loadaddr] - Load S Record File into MCU Memory

LS symbol - Display symbols

LSTM [mname|TRACE|AUTOSTART] - Display Macro Names/Definitions

MD startaddr [endaddr] - Display MCU Memory

MM addr - Modify memory from addr

MOVE addr1 addr2 addr3 - Move MCU Memory between addr1 &

 addr2 to addr3

MS addr byte|word [byte|word] - Set MCU Memory Byte(s) or Word(s)

MSG [string] - Display Message in Main Window

NOBR [address] - Remove all/specified Break Points

PAUSE [ms] - Wait for any Key Press/Delay Time

PRINT - Display PCbug11 version number

PROTECT [startaddr [endaddr]] - Display/Clear/Set Write Protected

 Address Range(s)

QUIT [Y] - Terminate PCbug11 session [without

 confirming]

RD [T] - Display/Trace MCU Registers

RESET [addr] - MCU Hardware Reset with Existing/New

 Reset Vector.

RESTART [option] - Restart PCbug11 with Same/New Option.

RM - Modify MCU Registers in window

RS register value - Set value of MCU register

S - Stop User Code Execution

SHELL ["command" ;P] - Shell to DOS/ Execute DOS command

SAVEM [filename] - Save Macro Definitions in Default/User

 File

T [addr] - Trace User Code

TERM [X1 Y1 X2 Y2] - Simple windowed terminal emulator

TYPE filename - Display Disk file in Main Window

UNDEF symbol - Undefine a symbol

VER - Display version number

VERF ERASE addr1 [addr2] - Verify that memory contains $FF

VERF SET addr1 addr2 value - Verify that memory contains value

VERF filename [memaddr] - Verify S record disk file against memory

WAIT [ms] - Wait for ms

Special Key operations:

CTRL B - Send Break on COM channel

CTRL P - Toggle MCU Memory Write Protect/RTS

 line

CTRL R - Attempt to re-synchronise talker

EVM Compatible commands

These commands operate in a similar manner to the command of the same name on the Motorola 68HC11 EVM systems.

ASM, BF, BR, G, HELP, MD, MM, NOBR, RD, RM

CDS8 Compatible commands

These commands operate in a similar manner to the command of the same name on the Motorola CDS8 system.

ASM, BAUD, DB, DEFINE, G, HELP, LS, RD, RS, SHELL, T, UNDEF, VER, WAIT

*ASM addr [mne|dir] - Call symbolic macro line assembler, with option to auto insert mnemonic/directive

Provides single line assembly/disassembly in main window.

The assembler is a single pass version of ASMHC11 2.6 and thus supports the same mnemonics and directives. Symbols can be defined within ASM using the standard Motorola syntax. Alternatively, symbols from an (equate) file may be loaded using the INCL operand. Note that mnemonics must be preceded by at least one space following the '>' prompt, otherwise they are treated as labels The same text editing features are available as on the command line.

The following keys provide additional features:

up arrow decrement prog counter by one.

down arrow increment prog counter by one.

enter move prog counter to next instruction boundary.

Esc Exit ASM and return to command line.

In PCbug11 there is the ability to optionally specify on the command line, a mnemonic or directive. If this is done, the ASM command automatically inserts the mnemonic or directive, and immediately returns to the command line. This allows mnemonic insertion or ASM directives to be executed from within a macro, without any input from the user.

Usage:

ASM $100 Assemble from memory address $100

ASM $100 INCA Insert INCA instruction at memory address $100

ASM Error messages

These are reported in the form of numbers the key to which is shown below

Error no. Meaning

1 Memory fault : Memory did not modify as expected

200 Syntax : Illegal character in that context

202 Syntax : Syntax error

204 Syntax : Label required (for EQU or SET)

212 Operand : Improper termination of operand field

213 Operand : Illegal addressing mode for operand

214 Address : Illegal forward reference

223 Address : Invalid addressing mode for 68HC11

234 Symbol : Redefined symbol

235 Symbol : Undefined symbol

238 Symbol : Undefined operation

320 Symbol : Error table overflow

321 Symbol : Symbol table overflow

250 Data : Displacement too large (normally branch)

251 Data : Value out of range

252 Data : Address too large for forced direct

255 Data : Division by zero

501 File : File not found

*BAUD [rate] - Display/Set serial baud rate

Allows user to change the PC's serial baud rate. This command accesses the PC's hardware directly, to allow a wider range of baud rates than can be selected by the MODE command. After execution, the actual baud rate is displayed. This may be different to the requested baud rate. Values in excess of 9600 are available - with a maximum of 38400 baud.

Note 1: To maintain Talker contact, the MCU's baud rate must first be set up to the new value. This can either be done by changing the appropriate talker code, or executing an MS command to dynamically change the MCU's baud rate register.

Note 2: The default baud rate for bootstrap download is approximately 7812, and for talker communication it is 9600. These may be changed by specifying a different baud rate when PCbug11 is started from the MS-DOS? command line. This feature has been added to allow PCbug11 and all talker codes to work without modification with different MCU crystal frequencies. e.g. if the MCU crystal is 4MHz, then to start up an MC68HC11A8 in bootstrap mode the command is: PCBUG11 -A 3906 This will ensure that PCbug11 uses half the default values (i.e 3906=7812/2) for both download and TALKER communication.

Note 3: Changing the baud rate will affect the minimum EEPROM programming time, as the EEPROM programming algorithm used by PCbug11 relies on the serial data transfer time.

Usage:

BAUD Display current Serial baud rate.

BAUD 19200 Change baud rate to 19200 baud.

*BF addr1 [addr2] byte|word - Set MCU Memory Byte(s) or Word(s)

This command forces an 8 bit or 16 bit value into MCU memory, starting at address <addr1> and finishing at address <addr2>. If <addr2> is not specified then only <addr1> itself is modified. If the starting address

is in an EEPROM block (as specified by the EEPROM command), then an EEPROM algorithm will be used to store the value. This action is completely transparent to the user. Block fill automatically verifies

the contents of memory filled.

Note: When setting memory to $00, ensure that the $00 is not specified in the most significant byte of a 16 bit value, as this will beinterpreted as an 8 bit value and may result in incorrect addressing of MCU memory.

Usage:

BF $1000 $AA Set MCU memory address $1000 to a value of $AA

BF $C000 $CFFF $D3 Set MCU memory addresses $C000 to $CFFF to the value $D3.

BF $00 $FF $FF00 Set MCU memory addresses $00 to $FF to values $FF,$00,$FF,$00 alternately.

Related commands: DB,MD,MS

*BL - Display Breakpoints

This command displays the list of current breakpoints. The breakpoint is displayed in hexadecimal format and followed by a macro name if one is defined.

Usage:

BL Display the hexadecimal address of all user defined breakpoints. Any command macro tagged to the breakpoint is displayed in brackets () after the breakpoint

Related commands: BR,NOBR

*BR [addr [macroname]] - Display/Set break points [with optiional Command Macro execution]

This command installs an entry in a breakpoint table, to permit suspension of user code execution initiated by the G command.

Breakpoints are set in MCU memory only when the user starts execution of code with the G command. Before control is passed to user code, a SWI instruction is placed at every breakpoint address specified in the breakpoint table. PCbug11 can handle user placed SWIs, with some overhead, provided the user's SWI vector is downloaded from an S record file using the LOADS command, and there are no breakpoints at the user SWI instructions. Note that when PCbug11 is first started, it reads the MCU's SWI vector and treats it as the user's.

It is possible to have a macro run on reaching a particular breakpoint. If the macro is not defined then PCbug11 will behave as if no macro had been specified. If when listing breakpoints the macro selected is not defined then the name of the macro is displayed preceded by ?. If no macro has been defined for the breakpoint then the macro is displayed as (-).

Usage:

BR Display the hexadecimal address of all user defined breakpoints. Any command macro tagged to the breakpoint is displayed in brackets () after the breakpoint address.

BR $C0F1 $C045 Set breakpoints at MCU addresses $C0F1 and $C045.

BR $C023 DISPREG Set breakpoint at MCU address $C023 and execute macro DISPREG when the breakpoint is reached.

Related commands: BL,NOBR

*CALL addr - Execute the subroutine at addr

This command causes the monitor to execute the MCU code located at <addr>. The MCU code must be terminated by an RTS instruction, otherwise monitor operation may be affected. The command has the same affect as the MCU instruction JSR <addr>. The current state of the monitor is unaffected.

Related command: G

*CLRM - Clear all Command, Trace and Autostart Macros

This command removes all macro names and definitions from the current library, including the TRACE macro. It does not affect libraries stored on disc with the SAVEM command.

Related commands: DEFM,DELM,EDITM,LSTM,SAVEM,LOADM

*CLS - Clear the main window

This command clears the main (blue) window on the screen. It also clears the last error/breakpoint messages if they are present.

Related commands: KLE

*CONTROL [parameter] - Display/Change PCbug11 system parameters

If no parameters are specified, then this command displays certain parameters used by PCbug11, which can be modified by the user. The available parameters and their functions are as follows:

CONTROL HARDWARE Access serial COM port directly through hardware

CONTROL BIOS Access serial COM port through BIOS calls

CONTROL RTS Control RTS level directly.

CONTROL PROTECT Use RTS to provide memory write protect function

CONTROL TIMEOUT value Specify value of serial COM timeout during input

CONTROL COM1|COM2 Specify which COM port to use

CONTROL ERRMSG 0|1 Disable or enable display of memory error messages

CONTROL LAST Toggle last error message window on/off (default on)

On startup, PCbug11 determines whether hardware access is possible, andif so, it uses this mode, and enables direct control of the RTS, otherwise it uses BIOS calls to the COM port, and enables memory write protect control. COM1 is used by default, but can be changed by specifying port=2 on the command line when starting PCbug11. e.g. PCBUG11 -A port=2

(See DEFM,SAVEM,LOADM for details of macro libraries)

*DASM addr1 [addr2] - Disassemble from addr1 [to addr2]

Disassembles MCU memory from address <addr1> for approximately 15 bytes, or to address <addr2> if specified. Disassembled code is displayed in main window. Display halts when the screen is filled. Press any key, except Esc, to continue disassembly for up to 15 bytes, or until address <addr2> is exceeded. Pressing Esc key immediately terminates disassembly. If only addr1 is specified, and it is the same as the

current program counter, then disassembly stops after only one line is displayed.

This provides a convenient method of tracing program code when using a Trace macro, which should contain the command: DASM *. Note that DASM will display a symbol in place of its value if one exists.

Usage:

DASM $B3 Disassembles MCU addresses $B3 to $C2

DASM $BF00 $BFFF Disassembles MCU addresses $BF00 to $BFFF

Related command: ASM,LS

*DB startaddr [endaddr] - Display MCU memory

This command displays the contents of memory starting at <startaddr> and ending at <endaddr>. If <endaddr> is not specified then the contents of <startaddr> and the following 15 locations are displayed.

Usage:

DB $1000 Display MCU memory addresses from $1000 to $100F

DB $C000 $CFFF Display MCU memory addresses from $C000 to $CFFF

Related commands: BF,MS,MD

*DEBUG - Reserved word

This command is reserved by PCbug11 for development use. Macros cannot be labelled using this name.

*DEFINE symbol value|address - Define a symbol

This command allows the user to explicitly define the value of a symbol. Each symbol has a name and a value.

The symbol name may consist of lower and/or upper case letters. The case of each letter is sensitive. That is abc does not equal ABC. In use symbols are simply replaced by their value in commands and the value is replaced by the symbol name in a disassembly listing.

Usage:

DEFINE PORTA $1000 Define symbol PORTA=$1000

DEFINE mask1 45 Define mask1=45 ($2D)

Related commands: LS,UNDEF

*DEFM macroname|TRACE|AUTOSTART] - Define Command, Trace or Autostart Macro

This command allows users to create command sequences (macros), which can be executed simply by typing the name of the macro. Up to 10 parameters can be passed to command macros. Within the macro, the required parameter is specified by the operator @N, where N is a single digit number between 0-9 inclusive. The syntax and use of pass parameters is the same as found in Motorola's assemblers. <macroname> can be any sequence of alphanumeric characters except reserved command names. Macros can be nested up to 5 levels. More than one macro is allowed at a time and these are held in an area known as the macro library. Macro libraries can be saved on disk and loaded again when required.

The reserved parameter name TRACE allows the user to define a macro which is executed on completion of every T (trace) command. See T for further details.

The reserved parameter name AUTOSTART allows the user to define a macro which is executed automatically on startupp of PCbug11. To correctly us the AUTOSTART feature, the macro library containing the macro AUTOSTART must be saved using the SAVEM command. Then, from MS-DOS?, the macro library name must be specified as the last parameter on the command line.

e.g. From PCbug11:

 DEFM AUTOSTART

 (type in macro definitions in main window. then press Esc key)

 SAVEM STARTUP

 QUIT (Quits PCbug11)

Then from PC command line:

 PCBUG11 -A STARTUP

 (STARTUP library is loaded and AUTOSTART executed, if it exists)

The main window is used to type in the macro definition. Other macro names may be included in the definition. To terminate the definition, press the ENTER/RETURN key on a blank line. Once defined, the macro cannot be edited within PCbug11. It may be edited using a standard text editor once the file has been saved, since PCbug11 saves macros in a

special text format (see LOADM). Macros can also be defined by the user using a text editor if the special format is used.

If the specified macro name already exists, then the existing macro is overwritten by the new definition.

Usage:

DEFM CONFIG Create macro called CONFIG

DEFM TRACE Create macro which is executed after T command

DEFM AUTOSTART Create macro which can be executed automatically on startup of PCbug11.

Related commands:CLRM,DELM,EDITM,LOADM,LSTM,SAVEM

*DELM macroname|TRACE - Delete Command or Trace Macro

As all macros must be accommodated within the free memory space available on the PC, this command allows the user to free up space for other definitions.

Usage:

DELM CONFIG Remove CONFIG macro name and definition

DELM TRACE Remove macro name and definition used by T (trace) command

Related commands: DEFM,CLRM,SAVEM,LOADM,LSTM

*DIR [mask] - Display disk directory

This command causes the directory/contents specified by the mask to be displayed. Standard DOS masks apply.

Usage:

DIR Display contents of current directory

DIR *.MCR Display all the files in the current directory with the extension .MCR (macros)

DIR \ Display all files in the root directory

DIR ..*.PAS Display all the files in the directory above the current one with the extension .PAS

Related command: TYPE

*DOS [command] - Shell to DOS/Execute DOS command

If no command parameter specified, then DOS causes PCbug11 to shell to MS-DOS?. To return to PCbug11, type EXIT at the DOS prompt. If a command is specified, then PCbug11 will execute the command, and return to PCbug11. Prior to returning, the program PCBUGRTN.EXE is executed (this

program must be stored in the same directory as PCBUG11.EXE). This program can be user defined if required. The supplied version simply displays a message and waits for any key press.

Usage:

DOS COPY *.TXT a:/V Execute COPY command and return to PCbug11

*EDITM macrnam - Edit a macro

This command allows the user to edit macros once they are defined/loaded into PCbug11. It is a full screen editor type and uses various function keys to edit the macros.

On executing the command PCbug11 displays the first 10 lines of the macro or less if there are fewer lines in a new window. Each line is preceded by a digit 0 to 9.

The editor obeys the following commands:

<alphanumeric> Insert key pressed into the current macro text. Character will replace current one if insert is off. If insert is on the character will be inserted before current character.

 The delete key will delete the character current under the cursor.

<ins> Toggle insert function on/off. Default is on.

<enter> Insert a new line in the macro.

<pgdn> The page down key displays the 10 lines following the current cursor line.

<pgup> The page up key displays the 10 lines before the current cursor line.

<esc> The escape key aborts the edit. The macro is not saved.

<F3 key> Complete edit and save alterations in macro library.

 Note ALT-Q and ALT-E will also perform this function.

Users move from line to line by pressing the arrow keys to move in the direction indicated. Lines which do not contain any characters after the edit are removed automatically. There is no direct command to delete a

line. If the first characters in the line are spaces then they are removed

If the macro does not exist it is created as a null macro. If a null macro is edited, only the first line is displayed (as a blank line).

Usage:

EDITM macro1 Edit the macro macro1.

Related commands: CLRM,DEFM,DELM,LOADM,LSTM,SAVEM

*EEPROM [startaddr [endaddr]] - Display/Clear/Set EEPROM Address Range(s)

This command allows the user to transparently perform memory modify operations on the 68HC11 internal EEPROM, including the CONFIG register. Once an EEPROM address range is specified, all memory write operations within that range will be handled by the appropriate EEPROM programming

algorithm. The command will not accept an address range which includes the PPROG register.

Instructions affected: ASM, BR, LOADS, MM,MOVE, MS, NOBR, T

Usage:

EEPROM Display memory address range to use EEPROM

 algorithm.

EEPROM 0 Clear all EEPROM memory address ranges.

EEPROM $103F Enable a write to address $103F to use EEPROM

 algorithm.

EEPROM $B600 $B6FF Enable writes within range $B600-$B6FF to use

 EEPROM algorithm

--

2/ EEPROM DELAY mS - Set EEPROM erase/write programming time

This command allows the user to specify the EEPROM Erase and Write programming time, within the range Min_delay to 255mS. The value of Min_delay depends on the serial baud rate, since the EEPROM programming algorithm used by PCbug11 relies on serial data transfer time. With a 9600 baud serial rate, the minimum delay time is 12mS. Note EPROM DELAY has the same effect as this command, care should be taken when using both commands.

Usage:

EEPROM DELAY 20 Sets the Erase and Write time delay to 20mS

EEPROM DELAY Display the delay time in use

3/ EEPROM ERASE [option] [addr] - Display/Change EEPROM Erase before Write function or bulk erase EEPROM.

This command allows the user to enable or disable EEPROM byte erasure before byte programming. The default state is Erase-before-Write Enabled. Another option of this command allows bulk erasure of the

EEPROM array at $B600-$B7FF, or at the address specified by <addr>.

Usage:

EEPROM ERASE Display EEPROM Erase-before-Write state

EEPROM ERASE DISABLE Disable EEPROM Erase-before-Write

EEPROM ERASE ENABLE Enable EEPROM Erase-before-Write

EEPROM ERASE BULK Bulk erase EEPROM array starting at $B600

EEPROM ERASE BULK $E000 Bulk erase EEPROM array starting at $E000

Note: After executing EEPROM ERASE BULK, Erase-before-Write is automatically disabled. This allows the fastest download of S records to EEPROM using the LOADS command. The bulk erase time defaults to approximately 200mS. It is recommended that Erase-before-Write be enabled before executing commands which may modify non-erased EEPROM. e.g. ASM,BR,T

*EPROM [startaddr [endaddr]] - Display/Clear/Set EEPROM Address Range(s)

This command allows the user to transparently perform memory modify operations on the 68HC711 internal EPROM. Once an EPROM address range is specified, all memory write operations within that range will be handled by the EPROM programming algorithm. The command will not accept an address range which includes EPROG/PPROG.

Note that in general the EPROM command will only operate if an external programming voltage is applied. IN GENERAL THE PROGRAMMING VOLTAGE SHOULD NOT BE PRESENT BEFORE Vcc IS PRESENT. ALSO THE PROGRAMMING VOLTAGE SHOULD NOT BE PRESENT AFTER Vcc IS REMOVED. Also the programming voltage is generally applied to the XIRQ pin and so an XIRQ talker may not be used. PLEASE CONSULT THE HC11 DATA/INFORMATION SHEET BEFORE USING PCbug11 WITH EPROM PROGRAMMING.

Instructions affected: ASM, LOADS, MOVE, MS, NOBR, T

Usage:

EPROM Display memory address range to use EPROM algorithm.

EPROM 0 Clear all EPROM memory address ranges.

EPROM $D000 $FFFF Enable writes within range $D000-$FFFF to use EPROM algorithm

--

2/ EPROM DELAY mS - Set EPROM erase/write programming time

This command allows the user to specify the EPROM Write programming time, within the range Min_delay to 255mS. The value of Min_delay depends on the serial baud rate, since the EPROM programming algorithm used by PCbug11 relies on serial data transfer time. With a 9600 baud serial rate, the minimum delay time is 12mS. Note EEPROM DELAY has the same effect as this command, care should be taken when using both commands.

Usage:

EEPROM DELAY 20 Sets the Erase and Write time delay to 20mS

EEPROM DELAY Display the delay time in use

*FIND byte|word addr1 addr2 - Find a bit pattern in MCU memory

<word> is a 2 byte value.

This command will read and search through the memory address range specified by the last 2 parameters in the command line. The addresses of all occurrences of the 1st parameter (byte or word) are displayed in the

main window. The syntax above is the simplest form, where a byte parameter is simply a value in range $00-$FF and a word is in the range $100-$FFFF. A maximum pattern of 4 consecutive bytes may be searched for. If the pattern contains leading $00s then the 1st parameter after FIND must be the byte count of the pattern to search for.

Usage:

FIND $AA $E000 $E3FF Find and display all occurrences of $AA in address range $E000 to $E3FF inclusive.

FIND $AA55 $B600 $B7FF Find and display all occurrences of $AA55 in 68HC11A1 EEPROM (Addresses $B600 to $B7FF)

FIND $0012 $F800 $FFFF Find and display all occurrences of $0012 in address range $F800 to $FFFF.

FIND $00 $1234 $C000 $DFFF Find and display all occurrences of $001234 in address range $C000 to $DFFF.

--

2/ FIND mnemonic addr1 addr2 - Find a mnemonic in MCU memory

This syntax eases the search for specific assembler code. The wild card operator ? may be used in the mnemonic operand to force a search for the opcode only. If the mnemonic addressing mode is not an indexed one, then its operand must be immediately preceded, without a space, by one of the following 3 symbols as appropriate: # (immediate); < (direct); > (extended)

Usage:

FIND LDAA >$1234 $E000 $E200 Find and display all occurrences of LDAA >$1234 in address range $E000 to $E200.

FIND LDAB $34,X $C230 $C560 Find and display all occurrences of LDAB $34,X in address range $C230 to $C560

FIND LDX #? $F000 $F2FF Find and display all occurrences of immediate load X opcode in range $F000 to $F2FF

Note that a maximum of 4 characters can be searched for.

*G [addr] - Start user code execution

This command causes the 68HC11 to begin executing the user code. If <addr> is not specified then execution will commence at the current program counter. If <addr> is specified then execution will commence at hat address.

Usage:

G Commence program execution at current program counter

G $B600 Commence program execution at $B600

Related command: S

*HELP [command] - Display help information

This command displays help information in a window which is displayed on top of the main window. If no <command> is specified then a general help screen is displayed. The user may scroll through the help window by using the up and down arrows and page up and page down keys. The user is unable to alter the contents of the help information. The help window is cleared by pressing the ESC key.

The help information is stored in a text file called PCBUG11.HLP. The default help option is help MENU which displays the help available.

Usage:

HELP Display general help menu (same as HELP MENU)

HELP RS Display help for RS command

*KLE - Kill last error message

This command causes the last error/break point window to be cleared.

Usage:

KLE

Related commands: CLS

*LOADM [filename] [macroname] - Load Macro Definitions from Default/User File and optionally immediately execute macro.

This command loads a library of previously defined macros stored on disc with the SAVEM command or created by the user using a text editor. The format of the file is checked against the macro rules and is not loaded if the format is not valid - see below. The newly loaded library is added to any existing library. If <macroname> is specified, and exists in the newly loaded library, it is immediately executed after loading.

The default extension for loading macro libraries is .MCR.

Usage:

LOADM Loads macro library from default file PCBUG11.MCR

LOADM USERLIB Loads macro library from files USERLIB.MCR

LOADM A A Loads macro library from file A.MCR and immediately executes the macro named A.

Related commands: CLRM,DEFM,DELM,EDITM,LSTM,SAVEM

Valid text format for macro files

DEFM macroname

BEGIN

 macro_instructions

END

macroname is the name of the macro being defined

macro_instructions are the PCbug11 instructions which the macro contains

Comments are allowed and are enclosed in { } brackets.

Note that comments are stripped out by PCbug11 when loaded. If a library is saved any comments present when the macros are loaded are lost.

Parameters are passed into macros by the @ symbol. That is @0 will be replaced by the first parameter when calling the macro, @1 will be the second etc.

*LOADS filename [loadaddr] - Load S Record File into MCU Memory, at optional new start address.

The <filename> parameter in the command is of the form <filename.ext> If no extension is specified then .S19 is assumed by the monitor. The default path is the current working directory, but the user may specify

any path and/or drive letter in accordance with the rules of MS-DOS?. Only S1 records are loaded. All other S record types are ignored, as are blank lines. Invalid format lines may generate an error message.

The S record data is normally loaded into MCU memory at the addresses specified in the S1 record load address field. However, the S record data can be relocated, during loading, to an alternative starting address by including the required address on the command line. During loading, PCbug11 traps certain mode-dependent user vectors, to give the monitor priority - these vectors are:

In Bootstrap mode: SWI - Used for breakpoint and trace processing.

In External mode : RESET - Used to start the monitor after a hardware reset.

 SWI - Used for breakpoint and trace processing.

 XIRQ - Used by the external ACIA to provide highest priority host communication.

Note that all these vectors are available to the user. The only difference is that there is a slight speed overhead associated with their execution. However, if no user breakpoints are defined, then user SWI instructions will be executed in real time, with no monitor overhead. Refer to the source listings of the appropriate talker code to determine the effects of user RESET and XIRQ on your software.

*LS symbol - Display Macro Names/Definitions

The currently defined symbols are listed by this command. The name symbol may include the * terminator which indicates a wild card character. This may appear only at the end of the symbol name The wild card indicates any combination of letters is possible and is used to display symbols of similar name.

Usage:

LS * Display all symbols

LS one Display value of symbol one

LS PORT* Display all symbols which commence with the letters PORT.

*LSTM [macroname|TRACE] - Display Macro Names/Definitions

This command displays either all macro names in the current library, or the expanded definition of a specified macro. Where macro names are used within a macro definition, the display on the screen is indented at each nested level.

Usage:

LSTM Display the names of all macros in the current library

LSTM CONFIG Display the definition of macro CONFIG

LSTM TRACE Display the definition of the macro used after execution of the T (trace) command.

Related commands: CLRM,DEFM,DELM,EDITM,LOADM,SAVEM

*MD startaddr [endaddr] - Display MCU memory

This command displays the contents of memory starting at <startaddr> and

ending at <endaddr>. If <endaddr> is not specified then the contents of

<startaddr> and the following 15 locations are displayed.

Usage:

MD $1000 Display MCU memory addresses from $1000 to $100F

MD $C000 $CFFF Display MCU memory addresses from $C000 to $CFFF

Related commands: BF,DB,MS

*MM addr - Modify memory from addr

This command modifies memory from the address specified in the command line. The contents of each memory location selected are displayed and the user may then alter this by entering a value or select the next location by pressing return. Memory may also be stepped through by using the up and down arrow keys. The memory modify is completed by pressing the <ESC> key. If the memory area has been predefined as EEPROM or EPROM then the modify will be transparent to the user into these areas. An '=' on the memory line will cause the current location to be modified and then stay at the same address. The command is also terminated by having a '.' on the line. Note that only hex digits are accepted and no digits

will be accepted on a line following a '.' .

Usage:

MM $100 Modify from address $100.

Related commands: MS

*MOVE addr1 addr2 addr3 - Move memory between addr1 and addr2 to addr3

This command performs a memory move. The contents of the source memory locations are unaltered. The destination address is indicated by addr3 and will be filled with the contents of addr1 to addr2. If the memory area has been predefined as EEPROM or EPROM then the move will be transparent to the user into these areas.

Usage:

MOVE $100 $150 $200 Move $50 bytes from $100 to $200

*MS addr byte|word [byte|word] - Set MCU Memory Byte(s) or Word(s)

This command forces 8 bit or 16 bit values into MCU memory, starting at address <addr>. A maximum of 9 values (8 or 16 bit) can be specified after parameter <addr>. Each value is written to consecutive addresses starting at <addr>. If the starting address is in an EEPROM block (as specified by the EEPROM command), then an EEPROM algorithm will be used to store the value. This action is completely transparent to the user.

Note: When setting memory to $00, ensure that the $00 is not specified in the most significant byte of a 16 bit value, as this will be interpreted as an 8 bit value and may result in incorrect addressing of MCU memory.

Usage:

MS $1000 $AA Set MCU memory address $1000 to a value of $AA

MS $C000 $1234 $56 Set MCU memory addresses $C000,$C001,$C002 to the values $12,$34,$56 respectively.

MS $50 $55AA $FF00 Set MCU memory addresses $50,$51,$52,$53 to the values $55,$AA,$FF,$00 respectively.

Related commands: BF,MD

*MSG [string] - Display Message in Main Window

Prints string to screen, without command line trace. The RTS line (write protect control) can be toggled if <string> is ^P.

*NOBR [address] - Remove all/specified Break Points

If no parameter is specified after the command, then all Breakpoints are removed from the breakpoint table, and the SWI vector is restored to its previous state. This implies that, if a user SWI vector had been

previously installed by the LOADS command, or was detected when PCbug11 was first started, then user SWIs will run in real time without intervention by PCbug11. If a parameter is specified after the command,

then the breakpoint at that address is removed.

Usage:

NOBR Remove all breakpoints, and restore previous SWI vector.

NOBR $E034 Remove breakpoint at address $E034.

Related Commands: BR

*PAUSE [mS] - Wait for any Key Press/Delay Time

The PAUSE command is useful in macros, where macro execution is halted until either a key is pressed, or the specified time has elapsed. Continuation from a PAUSE command is also achieved when the byte value $4B is received on the PC serial port. This allows the target MCU to control the execution of PCbug11 macro commands.

Usage:

PAUSE Suspend command execution until any key is pressed,

 or the value $4B is received on the PC serial port.

PAUSE 1000 Suspend command execution for 1000mS.

Related commands: WAIT

*PRINT - Display PCbug11 revision number

This command displays the PCbug11 start up message. This shows the Motorola copyright message and the revision number in use.

Usage:

PRINT Display revision number

Related commands:VER

*PROTECT [startaddr [endaddr]] - Display/Clear/Set Write Protected Address Range(s)

This command allows the user to inhibit PCbug11 from writing to any MCU memory location, either internal or external. Once the command is executed with an address or range of addresses, then PCbug11 will not permit any memory modify operation from taking place on those locations. If this is attempted, then an error message will appear to the right of the command line, indicating that the command has been terminated without modifying the memory location. Note that this command does not inhibit the user's own MCU code from writing to memory addresses.

Instructions affected: ASM, BR, LOADS, MOVE, MS, NOBR, T

Usage:

PROTECT Displays all 'write protected' memory address ranges.

PROTECT 0 Clears all 'write protected' memory address ranges.

PROTECT $102B Prevents PCbug11 from writing to BAUD register.

PROTECT $FFC0 $FFFF Prevents PCbug11 from changing 68HC11 vectors.

*QUIT [Y] - Terminate PCbug11 session

This command causes PCbug11 to terminate. If <Y> is not specified then a further prompt is required before the session is ended. No check is made to see if breakpoints have been cleared or macros saved before the command is carried out.

Usage:

QUIT Terminate session (PCbug11 will confirm this with user)

QUIT Y Terminate session without confirmation

*RD [T] - Display/Trace MCU Registers

Without the option <T>, this command displays the current value of the MCU's registers in the register window. With the option T, the registers are displayed in the main window, allowing a continuous register trace to be seen. The command can be executed while the MCU is executing user code. By careful use of both options, the MCU state at a particular point can be permanently frozen on screen, using the RD command alone, whilst continuously displaying the newest state using the RD T option.

Related commands: RM,RS

*RESET [addr] - MCU Hardware Reset with Existing/New Reset Vector.

This command causes the MCU to generate a hardware reset and optionally start execution of user code at <addr> or at the address specified by a previous RESET command. Once the reset occurs, the default

implementation of PCbug11 causes the talker code to re-initialised, and then the MCU either idles, if no user specified address was given in the command line, or the talker code jumps to the address specified by

<addr> on the command line. Note that once <addr> has been specified, it is maintained in the talker code until replaced by another value. Refer to the appropriate talker code source listing for details.

Note:

To simulate an external hardware reset, the RESET command forces the MCU to generate an internal reset which also causes the external RESET pin to go low. To produce the internal reset, the Clock Monitor Fail

detector is used. PCbug11 implements this by downloading and executing the following code in a reserved area of RAM:

 STY cme_jmp Clock monitor fail jump address

 STAA OPTION,X OPTION=$39

 STAB TEST1,X TEST1=$3E

 STOP

 JMP user_start <- in case STOP doesn't generate CME reset!

Where:

 Y=user reset address

 X=$1000 Default I/O register base address for M68HC11

 ACCA=$08 Enables the clock monitor in the OPTION reg.

The values passed to ACCB, CCR and Y depend on the MCU type & operating mode.

In Bootstrap mode: If MCU is an 'A8, ACCB=0 to clear the DISR bit in TEST1 reg.

For all other devices, ACCB=4 to force the clock monitor reset by setting the FCM bit in TEST1 reg. For all devices, CCR=$40 to enable the STOP instruction and I bit interrupts, and disable XIRQ to allow execution of the instruction after STOP if all else fails! The user reset address is $0000.

In External mode: For all devices, ACCB=$0, since TEST1 is not accessible in normal modes. CCR=$10 to enable STOP and XIRQ, and disable I bit interrupts. The user reset address is defined by the user in the

appropriate .MAP file

Note also that the above reset code forces the value in the Clock Monitor Fail vector, before starting user code execution. This means that the user must dynamically assign this vector in software before using the feature. The effect of this internal reset is identical to an external hardware reset, except that the COP Clock Monitor fail vector is taken instead of the RESET vector - provided the rising edge of the reset output signal is not delayed by external capacitance. Refer to the M68HC11 data book and User manual for details.

*RESTART [option] - Restart PCbug11 with Same/New Option.

This command performs a complete restart of the monitor, and is equivalent to typing the MS-DOS? command: PCBUG11 option. The only difference is that command macros are retained. Assembler macros and symbols are lost.

Usage:

RESTART Restart monitor with option specified when PCbug11 was first executed

RESTART -XE Restart monitor with -XE option. Equivalent to typing command:PCBUG11 -XE

Note: RESTART is useful when complete communication failure occurs, or when the MCU is given an external hardware reset in bootstrap mode.

*RM - Modify MCU Registers in window

This command allows the MCU registers to be modified in the register window using the normal keyboard editing keys. Each register is fielded in its own section of the window. To move within and between fields, the following keys are used:

Up arrow - Move back one register field

Down arrow - Move forward one register field

Left arrow - Move cursor backwards in current field

Right arrow - Move cursor forward in current field

Ins - Insert at current cursor position

Del - Delete at current cursor position

Return - Quit register edit and update all MCU registers

Esc - Quit register edit without changing MCU registers

Note: All fields, except SXHINZVC can be edited in decimal, binary or hex format. The SXHINZVC field is in binary format only. After quitting the edit the RD command is automatically run to confirm any register changes.

Related commands: RD,RS

*RS register value - Set value of MCU register

This command allows the user to force the value of any MCU register. Only one register at a time may be set. The register window is also updated.

Valid options for <register> are: PC, ACCA, ACCB, X, Y, CCR, SP

Usage:

RS ACCA $61 Set MCU accumulator A to value $61

Related commands: RD,RM

*S - Stop user code execution

This command causes the 68HC11 to stop executing the user code.

Usage:

S Stop program execution

Related command: G

*SHELL ["command" ;P] - Shell to DOS/Execute DOS command

If no command parameter specified, then SHELL causes PCbug11 to shell to MS-DOS?. To return to PCbug11, type EXIT at the DOS prompt. If a command is specified, then PCbug11 will execute the command, and return to PCbug11. Prior to returning, the program PCBUGRTN.EXE is executed (this program must be stored in the same directory as PCBUG11.EXE). This program can be user defined if required. The supplied version simply displays a message and waits for any key press. If the ;P option is

specified then the command is executed and immediately returns to PCbug11 without running PCBUGRTN.

Usage:

SHELL "COPY *.TXT a:/V" Execute COPY command and return to PCbug11

*SAVEM [filename] - Save Macro Definitions in Default/User File

This command saves on disc, the library of macros created by the DEFM command. Macros are stored on a disc file with extension .MCR. These files are normal text files and can be edited with standard text editors. However, there is a special format used in the macro files which the user must obey at all times if the macros are to be successfully loaded in to PCbug11 again (see LOADM). If the file name is omitted from the command, then the default name of PCBUG11 is used.

Note : Users should take care when saving a library to the same file that the library was loaded from. If any comments existed in the original library then they will be lost as PCbug11 strips out comments when loading macros.

Usage:

SAVEM USERLIB Save macro library in file USERLIB.MCR

SAVEM Save macro library in default file PCBUG11.MCR (Equivalent to: SAVEM PCBUG11)

Related commands: CLRM,DEFM,DELM,EDITM,LOADM,LSTM,SAVEM

*T [addr] - Trace User Code

This command single step traces program code from the address specified by the PC value, or addr, to the next logical address. Executing the command causes a SWI to be placed at the next executable address(es). If a command macro called TRACE has been defined, it is executed on completion of the T command.

A useful Trace macro is: RD

 DASM *

If the next executable instruction involves a branch to the current address, the trace is disabled, to allow the instruction to execute. However, PCbug11 will still display the TRACE state. Since the Talker is interrupt driven, this does not cause any hang-up of the monitor, and all PCbug11 commands are still available.

*TERM [X1 Y1 X2 Y2] - Simple windowed terminal emulator

With no options specified, this command starts a simple terminal emulator using the currently defined terminal window. Initially this is the entire screen area.

Optional values <X1>,<Y1>,<X2> and <Y2> redefine the window in which the terminal emulator operates. Note that if used, all values must be specified - their meanings are as follows:

 <X1> - Left column

 <Y1> - Top row

 <X2> - Right column

 <Y2> - Bottom row

The values need to be specified only on the first use of the TERM command - they remain in force until replaced by another set of values. To quit the terminal emulator, press the Esc key.

*TYPE [filename] - Display contents of filename

This command causes the contents of the file filename to be displayed. Standard DOS path names apply.

Usage:

TYPE RUNTIME.MCR Display contents file RUNTIME.MCR in current directory

TYPE \TEMP.BIT Display file TEMP.BIT in root directory

TYPE ..\LIST.PAS Display the file LIST.PAS in the directory above the current one

Related command: DIR

*UNDEF symbol - Undefine a symbol

Remove symbol from the symbol table list. The * wildcard character may be used. This character can only be used at the end of a symbol name and indicates a random number of characters. The symbol * can be used on its own and indicates ALL symbols - use with care!

Usage:

UNDEF one Clear the symbol one

UNDEF PORT* Clear all macros whose names begin with the letters PORT

UNDEF * Clear all macros

*VER - Display PCbug11 revision number

This command displays the PCbug11 start up message. This shows the Motorola copyright message and the revision number in use.

Usage:

VER Display revision number

Related commands: PRINT

*VERF ERASE addr1 [addr2] - Verify that memory contains $FF

This command checks that the memory area specified is erased. That is contains $FF. If addr2 is not specified then the byte at addr1 is checked. If addr2 is specified then the block of memory between addr1

and addr2 is checked. If the memory does not match, then the memory locations which are not erased are displayed along with the value it contains.

Usage:

VERF ERASE $100 Check address addr1 is erased

VERF ERASE $E000 $FFFF Check address block from $E000 to $FFFF is erased

--

VERF SET addr1 addr2 value - Verify that memory contains value

This command checks the contents of memory from addr1 to addr2 and verifies that each byte is equal to value. If the location is not equal to value then the memory value is displayed. Value is a single byte value

Usage:

VERF SET $100 $1FF $35 Check that the block from $100 to $1FF contains $35.

--

VERF filename [loadaddr] - Verify S Record File against memory.

The default extension of <filename> is .S19. The default path is the current working directory, but the user may specify any path and/or drive letter in accordance with the rules of MS-DOS?. Only S1 records are verified. All other S record types are ignored, as are blank lines. Invalid format lines may generate an error message.

The S record data is normally compared with MCU memory at the addresses specified in the S1 record load address field. However, the S record data can be compared to an alternative starting address by including the required address on the command line as <loadaddr>.

Related command: LOADS

*WAIT[ms] - Wait for ms

The WAIT command is useful in macros, where macro execution is halted until either a key is pressed, or the specified time has elapsed. Continuation from a WAIT command is also achieved when the byte value

$4B is received on the PC serial port. This allows the target MCU to control the execution of PCbug11 macro commands.

Usage:

WAIT Suspend command execution until any key is pressed, or the value $4B is received on the PC serial port.

WAIT 1000 Suspend command execution for 1000mS.

Related commands:PAUSE

7 Advanced Topics

7.1 Macros

A useful feature within PCbug11 is being able to execute common command sequences by typing just a single instruction. This feature isimplemented using macros.

Macros may be defined by the user either in PCbug11 or externally using a text editor. It is possible to define more than one macro while using PCbug11 and the area where the macros are held is called the macrolibrary.

Macros have two main elements - names and definitions. Every macro is known by a name. This name can be any sequence of letters up to 80characters long except for reserved commands within PCbug11. The macro is run by typing its name in the same way as for other PCbug11 commands.

The macro definition consists of the commands which are to be carried out by the macro. The commands are executed in the order in which theyare defined.

The total space within PCbug11 allowed for the macro library is limited only by the size of the memory on the PC. This should be more than enough for most applications. There is no limit on the maximum number of macros allowable as long as the maximum memory limit is not exceeded. If a macro is defined which has the same name as a macro which existed previously then the macro which existed is automatically deleted, although PCbug11 does warn the user before proceeding.

Macros in the macro library are lost when PCbug11 is terminated. For this reason it is possible to store macro libraries on disk and load them again when required by PCbug11. Macros are stored on disk in a special text format. The files may be edited by text editors provided the special format is always obeyed. When macros are stored after being defined from within PCbug11 this special format is automatically generated. When a macro library file is loaded all macros within that file are loaded and added to the current macro library.

It is possible to have macros refer to other macros in their definition. This means that a macro can be called by another macro as if it were a standard PCbug11 command. This nesting of macros is allowed to be up to 5 levels deep. This means of course that a macro should never call itself.

 Macros can also be passed parameters. That is, a macro may be defined with certain parameters left as blanks to be filled in later. When the macro is called the parameters called with it are used to fill the

blanks in the definition. Parameters are defined by using the "@" character followed by a number to indicate which parameter is to be used. @0 indicates the first parameter passed, @1 the second up to @9 which is the last parameter. Macros will not accept parameter numbers greater than 9.

7.1.1 Defining Macros

Macros are defined in two ways. Firstly, the macro may be defined or edited within PCbug11. For definition this involves simply typing DEFM followed by the desired macro name. PCbug11 will then accept command lines from the user and place these in the macro library under the macro name. This is probably the quickest and easiest way to define macros.

Secondly, the macro may be defined within a text file. A standard format is used. The definition of this format is under the DEFM command in section 6.2.2. The format is very simple. The first line of the macro must contain the reserved word DEFM followed by the name of the macro being defined. This must be followed by a line containing the word BEGIN on its own. After this any number of lines may be entered containing PCbug11 commands. It is usual to proceed these lines by a tab or space character. The macro definition is terminated by the reserved word END. Another macro may be defined immediately following this line.

As described before parameters may be passed into a macro. They replace special symbols according to their position in the macro command. The parameter positions are defined by the @ symbol followed by a number from 0 to 9. The parameter expressed first on the macro command line replaces the @0 symbol. The second parameter replaces the @1 symbol.

For example, suppose a macro named RUNIT has been defined which uses two parameters. The definition of RUNIT is:

 DEFM RUNIT {Macro definition}

 BEGIN

 LOADS @0 {Load S-record whose name is 1st parameter}

 VERF @0 {Verify the S-record}

 G @1 {Run a program at the second parameter}

 END

Comments are enclosed in {} and are ignored and thrown away by PCbug11.

This macro can now be used to automatically load and verify and run a program with one simple command. To load, verify and run an S-record called TRYIT.S19 and run it from address $E000 simply type :

 RUNIT TRYIT $E000

Macros may be loaded automatically when PCbug11 is run from the DOS prompt. This is done by placing the name of the macro library file on the command line after the talker/boot option. If there is a macro within this file called "AUTOSTART" then this macro is run automatically before the user begins working. This is very useful where the user has to run certain commands before using the hardware. Parameters may be passed to the AUTOSTART macro by enclosing them in brackets () in the PCbug11 command line immediately following the macro= option.

Due to the way PCbug11 stores macros internally, it is possible for a macro to exist which does not contain any commands. The definition for such a macro would be:

DEFM macro1

BEGIN

END

Macros like this are termed null macros. They can be run, saved, deleted etc. like any other macro. They can be defined as breakpoint macros. Null macros are normally used in development work when a macro is required, but its exact operation is unclear. The user would therefore define a macro, but leave it null - basically as a reminder.

7.1.2 Editing Macros

Macros may be edited by two methods. Firstly, the EDITM command may be used. This allows the user to alter a macro from within PCbug11. This is a full screen editor and is limited to having 10 lines on show at any one time. This should be enough for most operations. The command set of the editor is given in section 6.2.2 under EDITM.

Secondly, macros may be edited using a text editor and an ASCII file. This allows the user to use the editor of his own choice. The text file has an additional advantage in that comments may be included in the file. Macros in text files may be regarded as 'source' files for PCbug11. In fact macros are run using an interpretive system (no compilation is needed), but text files are easier to maintain than libraries created in PCbug11 itself. Note that by using the DOS command the user may work on macro text files without having to exit and restart PCbug11.

Bear in mind that although macros may be saved from PCbug11, any comments which existed in a library previously loaded are discarded. This means that if a macro file is loaded (including comments) and then saved then the comments in the original file will be lost.

7.1.3 Listing and Clearing Macros

In addition to their creation and saving, macros can also destroyed and listed.

Macros are stored dynamically in the PC memory. That means that they will only use as much memory as they need. Eventually, the user may find that the PC runs out of memory. This is indicated by the fact that macros may no longer be defined or loaded into the program. At this point it may be necessary to delete some macros to make way for more. Macros which are deleted are removed from memory and therefore should be saved in a disk file using the SAVEM command if they are needed later.

Macros may be deleted in two ways. Firstly, all macros may be removed at the same time. This is achieved by using the CLRM command. No check is made by PCbug11 before this is done.

Secondly, a single macro may be deleted using the DELM command.

Note that if a macros is loaded which has the same name as a macro already existing then the current macro is replaced by the new one. This is not true of the definition (DEFM) of a new macro when a check with the user is made.

7.2 Using Trace and Breakpoints

A useful feature in any development system is the ability to stop a program when a certain address is reached. An associated feature is to stop the program after it has executed the current command. These features are normally termed breakpointing and tracing.

A breakpoint is placed at a certain point in the program by the user to allow the examination of internal variables etc. When the program reaches that point it will stop. This feature may be implemented in

several different ways. In PCbug11 breakpoints are created by using the SWI (software interrupt) command of the 68HC11. When the program executes a SWI an interrupt is caused which allows PCbug11 to regain control of the HC11. This has two main implications.

For PCbug11 to be able to insert a breakpoint, the memory containing the program must be alterable. PCbug11 simply replaces the opcode at the address of interest with the SWI opcode. If the memory containing the program is ROM then no breakpoints can be installed. In fact PCbug11 will warn of this, but will run the program anyway.

In the second place, PCbug11 must be able to alter the SWI interrupt vector. Again if this is in ROM then no breakpoints maybe implemented. This also means that the user is inhibited from using SWIs in his program - at least in a real time sense. PCbug11 will remember what the user has set the SWI vector to and if an SWI is encountered which is not intended to be a breakpoint then PCbug11 will cause the program to jump to he location indicated by the user SWI vector. This interference causes a delay in the response to a user SWI. If no breakpoints are installed then no delay will be experienced (above the normal latency).

Breakpoints are created by using the BR command. As soon as the breakpoint is specified PCbug11 will change the SWI vector to a new value for its own use and will store the user's SWI. The breakpoint

itself will only be placed into the program when the program is run. The user opcode at the address of interest is read and stored by PCbug11. Multiple breakpoints may be specified and all will be written into the user program when it is run. As long as breakpoints exist the SWI vector will be reserved by PCbug11.

When a breakpoint is reached by the program a small program is run by the HC11. This informs PCbug11 that an SWI has been reached. PCbug11 checks to see whether this is a breakpoint or not. If it is then a message is displayed on the screen of the PC and a macro may be run if necessary. At this point PCbug11 will display the BREAK status. Note that the SWI will remain in the program until a stop S instruction has been executed.

If the program exists in EEPROM or battery backed RAM then it is possible that the SWI vector and the SWI opcodes could be left in the memory. The SWI vector will be left if the hardware is powered down while breakpoints still exist. SWIs would be left in memory if a stop S has not been executed, after the program has been run, before the hardware is powered down.

Tracing is very similar to breakpointing. In practice it may be desirable to step through a program instruction by instruction. It is possible to do this by breakpoints. This involves placing a breakpoint

at the address immediately following the assembly command to be executed. This would require a large amount of user involvement and so PCbug11 can do this automatically. This is achieved by the trace command T.

This is an extremely complex operation for PCbug11 to perform and therefore can be a noticeably slower process. The reason is that PCbug11 must find for itself the address of the next opcode in the program. This involves disassembling the opcode at the current address and deciding how many bytes follow it. The process is complicated if the opcode is a jump and even more so if a branch. In normal cases an SWI replaces the next opcode in the program. For a jump the destination opcode is replaced. For a branch two opcodes have to be replaced. The one following the branch instruction and the one at the destination of the branch.

Once the SWI has been placed in memory, PCbug11 will run the program. The second instruction it sees will be an SWI and so the program will be stopped. Again PCbug11 must be able to amend the contents of the SWI vector and the program memory. A macro may be specified which will be executed when the trace command hits a trace SWI. This macro must be called TRACE and can contain whatever the user requires. Typically the macro would disassemble the current instruction and perhaps read the registers. The macro can also contain the trace command T itself. In this case the program would step through all its instructions until stopped by the user or it hits a self loop

The self loop condition occurs when a proogram jumps or branches to the location it is already at. In this case it is pointless to perform a trace and so the program continues to run and displays the status TRACE until stopped by the user (S command) or the branch condition is met/failed.

7.3 Talkers in EEPROM or External Memory

The usual approach when using PCbug11 is to use a boot option. Here the talker program is downloaded every time the board is used. This has two main disadvantages. Firstly, the transfer of the talker from the PC to the board may go wrong and the talker will not work, and secondly, this form of talker uses the HC11's internal RAM. On some versions this RAM is limited to 256 bytes or less and when the stack usage and the interrupt vectors are considered, there is very little room at all for user programs or data in the RAM.

An alternative approach to this is to install the talker in the on-chip EEPROM of the HC11 or in an external memory. Then whenever the package is run it is not necessary to download thee talker program to the board Additionally, since the talker does not reside in RAM the only areas which the user may not use are the stack area and the interrupt vectors (for bootstrap mode).

Talkers which reside in EEPROM are loaded by first booting up the HC11 as normal. Then the EEPROM area must be defined. Then the talker must be installed using the LOADS instruction. It is probably best, next to verify the installation using the VERF command. Once verified correctly the talker is ready to use. The user should terminate PCbug11 and run it again selecting the correct .MAP file instead of the usual boot option (see section 7.5).

A special talker is available which already uses the internal EEPROM. This is called TALKEREE.

It is important that two files are available when using this option. These are TALKEREE.S19 and TALKEREE.MAP. The .S19 file is the S record format of the talker to be installed in EEPROM - this must be in the user's current directory. The .MAP file is a list of addresses which PCbug11 uses to ensure good communication with the board. The information contained in the .MAP file is normally handled internally by PCbug11 when the boot option is used. The .MAP file must also be in the user's current directory.

For example, to program the talker into EEPROM on a 68HC11E9 the following macro could be used:

 DEFM AUTOSTART {Run this macro automatically}

 BEGIN

 MS $1035 0 {Clear BPROT register - not needed on A8}

 EEPROM $B600 $B7FF {Enable EEPROM algorithm}

 LOADS TALKEREE {Program talker into EEPROM}

 VERF TALKEREE {Verify programming was OK}

 QUIT Y {Exit PCbug11}

 END

If the above macro is saved in a file called STARTUP.MCR then the following sequence can be followed.

 1/ Startup PCbug11 by typing: PCBUG11 -E STARTUP

 2/ Reset board.

 3/ Startup PCbug11 by typing : PCBUG11 TALKEREE

The EEPROM talker is now running.

NOTE 1: If any errors are displayed while running the macro then stop the macro by hitting S (capital only) and correct the errors.

NOTE 2: This approach leaves most of the RAM free for user programs. The default stack for TALKEREE is at $3F, so avoid use of the RAM at addresses less then this address (i.e. between $00 and $3F). The user can move the stack by modifying the source file TALKEREE.ASC and then assembling it using ASMHC11 to produce a new stack value. This would then have to be reloaded using the above sequence. The symbol to alter is called STACK.

NOTE 3: The interrupt vector jumps are contained from $C4 to $FD and are initialised to 'safe' values for PCbug11. The user can modify these JMP instructions but remember that PCbug11 uses interrupts - XIRQ normally - so do not modify this jump. In any case user program code should not fill this area. A good idea may be to set up the required interrupt vectors and then run the PROTECT command (see 6.2.2).

7.4 Programming EPROM (711) Parts

It is possible to program 68HC711 EPROM parts using this package. The hardware must be configured as follows:

 Do not connect XIRQ to PD0/SCI Rx

 Place the part in bootstrap mode and pull IRQ to Vdd

 Connect Vdd to the chip

 Connect Vpp to the XIRQ pin via a 100ê resistor

NOTE: DO NOT CONNECT ANY Vpp VOLTAGE UNLESS Vdd IS CONNECTED. FAILURE TO

FOLLOW THIS SEQUENCE WILL CAUSE THE CHIP TO BE DESTROYED.

Attach Vdd to your board and startup PCbug11 as follows:

PCBUG11 -E/D/K (For 711E9/711D3/711K4)

After ensuring that the board is working normally and that Vdd is applied then apply Vpp to the Vpp terminal on the board.

Type commands:

EPROM $D000 $FFFF To define the EPROM memory range

LOADS <filename> Load the S record file to be programmed

VERF <filename> To verify programming is successful

Once the part has been successfully program remove Vpp BEFORE Vdd.

 7.5 Designing New Talkers

It is possible and sometimes desirable to redesign or rewrite a talker for a particular application. Occasionally, new HC11s are announced whose behaviour after reset in bootstrap mode is slightly different to normal (viz 68HC11D3). In such cases the bootstrap talker would need to be rewritten. In practice this will normally be done by Motorola and so it would be wise to check that the program has not already been amended before proceeding to change a bootstrap talker.

However, ROMed talkers are more likely to require customisation by the user. Here PCbug11 requires two files to be created. Firstly, the talker itself must be supplied/modified and loaded into external memory. Secondly, a file called a mapfile containing the addresses of several key talker program routines. Together these allow PCbug11 to operate with any customised talker. The .MAP and .ASC files for TALKEREE should be used as templates when creating new ROMed talkers. By sticking to conventions obeyed there the user should avoid any major problems.

Boot talkers may be customised by modifying the source file for the most appropriate TALKXX.ASC file in TALKSRC or TALKSRCX. The new binary download file is created by using the ASMHC11 assembler with the ;B option. A typical command line would be :

 ASMHC11 TALKXX ;B

This will search for the TALKXX.ASC file and create a download file with extension .BOO. If the file actually uses the XIRQ interrupt then the filename should be renamed to a .XOO file to avoid confusion.

Appendix A - Circuit Diagram and Components List

The hardware required for use with the PCbug11 software is exactly the same as the hardware described on the Motorola application note AN1010, with one addition. This is that the XIRQ pin should be attached to the PD0/Rx pin on the processor (except when programming EPROM). This means that the talker software can use the highest level interrupt available for communications.

The hardware places the part in bootstrap mode using the mode pins and the SCI communications port is translated to RS232 voltage levels using a MC145407 chip or equivalent. An oscillator or crystal is also required. Pulling up the IRQ pin will improve reliability. Pulling up other input pins will reduce current supply but is not necessary when working on the bench.

If the user has an alternative method of translating the voltage levels then the MC145407 solution could be replaced. Incidentally, the application note describes a simple program which does a much simpler task than PCbug11, but uses exactly the same principles and may provide interesting background reading for the user.

A.A Suitable hardware platforms

Motorola currently supplies two boards which may be used directly with PCbug11. The D3 programmer board which may be used directly and the EVBU board which requires the addition of one link to place the part into bootstrap mode. There may be other suitable boards.

Note that the key elements are to place the part into bootstrap mode and to have access to the SCI.

Appendix B - PCbug11 Error messages

There are three levels of error reporting within PCbug11:

 1/ Errors which report a failed operation

 2/ Errors which indicate a failed communication

 3/ Errors which report a bad command string

Errors reported by the ASM command are explained in section 6.2.2.

B.1 Operation Errors

These are displayed on the main window and indicate that the operation has failed due to normal system behaviour. For example, trying to load a macro called TRYIO and that file does not exist in the directory. This returns an error message. Similarly, a verify may fail if an area of EEPROM is not defined. These errors indicate that the operation has failed because the user has not properly prepared the system. If it is possible the error message will indicate why the operation has failed, but this is not always possible.

B.2 Communications Errors and other Fatal Errors

Communications are a fundamental part of PCbug11. Unfortunately, without due care, they can also be a troublesome part. Errors are reported in two ways. Firstly, a message is displayed in the error window which indicates which communication failed. This is displayed in red on colour screens. A message displayed in this way may alternatively indicate a failed operation. In either case the message will remove itself from the screen after a few seconds or can be removed by hitting any key.

As the operation in progress may be a subset of the command which the user tried to run, the message may not always be meaningful. For this reason an additional message may be printed just below the register window (in yellow) which indicates which command actually failed. This has the form:

 Last error : <command> failed

where <command> is the command which the user tried to run.

If these errors persist, something is seriously wrong, please refer to section 3.3.

In detail the error messages are:-

1/ Can't find .MAP file PCbug11 can't find the map file associated with the filename in the command line. This must in the PCBUG11 directory under a sub-directory called TALKMAP. The file must have the extension .MAP. This error is only shown when starting or RESTARTing

2/ Comms fault: <operation> terminated <operation> is Register read, Register write, Memory read, Memory write. This indicates that the operation indicated has failed. These four basic operations are used to implement many of PCbug11's commands and so an additional Last error message is also displayed so that the user can determine exactly which command has failed. The operation has failed because communications with the HC11 are not working. In addition, PCbug11 has been unable to

recover from this failure.

3/ Memory set error This error indicates that PCbug11 has been unable to set the requested memory location. This may be because the memory is not working properly or perhaps has not been enabled as EEPROM if that is required. The last error message will also indicate the error.

4/ Memory write at <address> failed : please retry This is related to the Memory set error and indicates that the memory set operation at the indicated address has failed. The message please retry indicates that despite the error PCbug11 has not lost communication with the HC11.

5/ Comms fault : Memory write at <address> terminated This indicates that a write to <address> has not been completed and that communications with the HC11 have been lost. This may occur if the memory write destroyed part of the talker or the current Baud rate or in some other way caused the HC11 to abort normal operation.

6/ Communications Synchronised This indicates that PCbug11 is communicating normally with the HC11. It is normally displayed after a <CTRL> R command.

7/ Communications fault Indicates that PCbug11 is unable to establish communication with the HC11. Normally displayed after a <CTRL> R command.

8/ Memory read failed : please retry PCbug11 lost communication with the HC11 while reading memory. However, it did re-establish communications afterwards. The error could be displayed after the <ESC> key is pressed during a memory read operation.

B.3 Command Errors

Command errors appear on the same line as the command which has just been entered and indicate that PCbug11 is unable to process the instruction as typed. There are three types of command error as follows:

 Command Error This is returned when a command is entered which is neither a PCbug11 command nor a currently defined macro.

 Operand Error This is returned when the operand of a command is incorrect. See the command list section 6.2.2 for the correct operands of each command.

 Range Error This is returned when a command which includes a range of addresses has exceeded the maximum range allowed.

Appendix C - PCbug11 Disk Contents

PCbug11 comes supplied on 1 disk. The contents are as follows:

Disk PCBUG11.EXE+ PCbug11 program

 PCBUGRTN.EXE+ Return program - user definable

 CODES.P11+ Mnemonic tables for assembly/disassembly

 OFFSETS.P11+ Mnemonic tables for assembly/disassembly

 ASMHC11.EXE Absolute assembler program

 CONVERT.EXE Program which converts older macro library files to V3.0 text macro files. This programis only used if the user has macro files generated under old versions of PCbug11.

 TALK??.BOO Talkers using SCI interrupt

 TALK??.XOO Talkers using XIRQ interrupt

 PCbug11.HLP This file contains all the help details for PCbug11. The HELP feature will not work unless this file is in the same directoryas PCBUG11.EXE

 TALKSRC This directory contains the source files and S-records of all the talkers which can be loaded into EEPROM/EPROM and use the SCI interrupt.

 TALKSRCX This directory contains the source files and S-records of all the talkers which can be loaded into EEPROM/EPROM and use the XIRQ interrupt.

+ PCbug11 will not work unless these files/directories are all in thesame directory

Appendix D - Software Version Information

This manual is based upon V3.20 of PCbug11. Periodically, this software may be updated and enhanced. Information on the latest version with respect to V3.20 may be included on this disk.

PCbug11 V3.20 Information

Command Line Ateration

PCbug11's DOS command line has been significantly changed for this version as compared to earlier issues.

Full details are contained in the text, however, the key features are:

. Explicit declaration of macro names, baud rate and com port

. Simplification of boot type talker selection

. Simplification of directory structure by creation of new .XOO files

. Feature to allow parameters to be passed to the AUTOSTART macro

. New single file for help

Placing of .MAP files

The PCbug11 documentation indicates that any .MAP files should be placed in the user's working directory. In V3.20 PCbug11 will not find the user's .MAP file unless it is in the same directory as PCBUG11 itself.

PCbug11 V3.21 Information
S-Records of more than 8KB

A problem existed in earlier versions when loading or verifying S-records of more than 8Kbytes. This occurred when an S-record exceeded the PC internal 8Kbyte boundary. This could cause the PC to crash or cause strange graphic effects. This has now been remedied.

Programming 711 parts

68HC711 parts may be programmed more quickly using PCbug11 if an alternative crystal is used. If a crystal of 4.9152MHz is used then the HC11 is capable of communicating at 38400 Baud. This in turn reduces the programming time required by internal EPROM to one quarter of the normal time.

The method requires a talker which initialises the SCI properly, the option baud=4800 to start PCbug11, and the digit 7 as a prefix to the bootloader type. A talker called TALK7E.BOO is supplied to program the 711E9 part. To use this talker the command line should be:

PCBUG11 -7E baud=4800

On detecting the presence of the 7 and the baud=4800 options together, PCbug11 will use a default baud rate of 38400. If either of these options are missing then PCbug11 will default to its standard baud rate.

PCbug11 V3.22 Information
EEPROM and EPROM bugs

A possibility existed that the EPROM and EEPROM functions would not work with certain options. This concerns mainly options - A/D/K. Option D would allow all the normally disallowed commands and would not program properly. K would not program EEPROM or EPROM properly and A would not program EEPROM correctly.

This bug has been fixed on the current version.

PCbug11 V3.23 Information

This document notes the changes made to PCbug11 for revision 3.23. The changes are noted with respect to V3.22. See also PCbug11 V3.22 Information.

CONTROL command options

Two options have been added to allow the location of the PPROG (EEPROM) and EPROG (EPROM) programming registers to be moved by the user. This may be necessary in the future as the HC11 family develops. The address of these registers may be the same - i.e. one register performing both tasks. The current values are displayed using the CONTROL command on its own. The values may be changed using the format

CONTROL PPROG addr (addr is the address to be used)

CONTROL EPROG addr (addr is the address to be used)

Note that PCbug11 assumes that the relevant bits in each register maintains the same position as in the 711E9.

User Map files

This must now be placed in the user's working directory as described in the manual

Command Line Compiler

The crystal value used parameter entered to the command line compiler is now given in KHz. This will allow the use of an extended range of values.

EPROM Command

An EPROM memory range error now reads 'Invalid EPROM address range'.

EPROM/EEPROM Programming Error

The error displayed is now 'Programming t/out' or 'Programming cmd' depending on the failure.

Loading and Verifying S-records

An upgrade here allows users to load and verify S-record files which contain backward discontinuous S-records. The code was already able to handle forward jumps in the S-record but not backward jumps. This is now allowed.

Automatic Recognition

PCbug11 now has the capability of recognising which HC11 is in use from the contents of the boot ROM. The boot ROM contains information in two bytes which help to describe the part in use.

PCbug11 reads these and displays the version in use by the MCU : label. Note that some MCUs may not be recognised correctly by this feature
